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Chapter 3
From Genome Sequences to Protein Structures:

Comparative Modeling and Fold Assignment
The key to understanding the inner

workings of cells is to learn the three-
dimensional atomic structures of the
some 100,000 proteins that form their
architecture and carry out their
metabolism. These three-dimensional
(3D) structures are encoded in the
blueprint of the DNA genome. Within
cells, the DNA blueprint is translated
into protein structures through
exquisitely complex machinery- itself
composed of proteins. The experimental
process of deciphering the atomic
structures of the majority of cellular
proteins is expected to take a century at
the present rate of work. New
developments in comparative modeling
and fold recognition will short circuit
this process, that is we can learn to
translate the DNA message by
computer.

 The success of these methods rests
on a fundamental experimental
discovery of structural biology: the 3D
structures of proteins have been better
conserved during evolution than their
genome sequences. When the similarity
of a target sequence to another
sequence with known structure is above
a certain threshold, comparative
modeling methods can often provide
quantitatively accurate protein structure
predictions,

 since a small change in the protein
sequence usually results in a small
change in its 3D structure. Even when
the percentage identity of a target
sequence falls below this level, then at
least qualitative information about the
overall fold topology can often be
predicted.

In protein fold assignment, a
genome sequence is computationally
tested for compatibility with a library of
known protein folds. Current estimates
of the number of protein folds range
between 800 and 15,000, but each
estimate is more than a thousand times
smaller than the number of proteins. The
goal of fold assignment and comparative
modeling is to assign each new genome
sequence to the known protein fold or
structure that it most closely resembles,
using computational methods.

Fold assignment and comparative
modeling techniques can then be helpful
in proposing and testing hypotheses in
molecular biology, such as in inferring
biological function, predicting the
location and properties of ligand
binding sites, in designing drugs,
testing remote protein-protein
relationships. It can also provide
starting models in X-ray crystallography
and NMR spectroscopy.

The experimental process of deciphering the atomic structures of the
majority of cellular proteins is expected to take a century at the
present rate of work. But there is now reason to think that new
developments in computational protein "fold assignment" to genome
sequences, coupled with comparative modeling, will short circuit this
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Protein fold assignment. A genome-encoded amino acid sequence (center) is tested for
compatibility with a library of known 3D protein folds.  An actual library would contain of
the order of 1000 folds; the one shown here is a representation, illustrating the most
common protein folding motifs. There are two possible outcomes of the compatibility test:
that the sequence is most compatible with one of the known folds or that the sequence is
not compatible with any known fold.  The second outcome may mean either that the
sequence belongs to one of the folds not yet discovered, or that the compatibility measures
are not fully enough developed to detect the distant relationship of sequence to its structure.
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BPI: A case study in assigning genome sequences
to a known 3D protein structure.

Bactericidal permeability-increasing
protein (BPI; Figure 1) from human white
blood cells is a potent antimicrobial protein of
456 amino acid residues. Its structure,
determined by X-ray crystallography, was
found to be a new fold: an elongated,
boomerang-shaped molecule, unlike any
previously known structure. Prior to the
publication of the 3D structure of BPI, its
amino acid sequence was submitted to the 2nd
meeting on Critical Assessment of Protein
Structure Prediction methods (CASP2).
Several methods of fold assignment correctly
concluded that the BPI sequence was
incompatible with any protein fold then in the
database of known protein structures.

With the 3D structure of BPI available, it
became possible to search databases of genome
sequences to learn which other protein
sequences are compatible with the BPI

structure.  In other words, it was then possible
to assign other sequences to the BPI structure
(Beamer, Fischer, & Eisenberg, 1998). This
search uncovered 13 distant relatives of BPI in
a diverse set of eurkaryotes, including rat,
chicken, worm, and biomphalaria galbrata.  The
13 new proteins share only 13-19 % sequence
identity with BPI, below the "twilight zone" of
marginal identification by sequence comparison
methods.

The significance of this case study is that
advanced computational methods can assign
numerous genome sequences to the 3D
structures by methods of fold assignment,
short circuiting the laborious experimental
determination of 3D structures. Chapter 3
discusses prospects for improving the
sensitivity of fold assignment methods, so that
even more distant sequence-structure
relationships can be detected by computer.

A ribbon diagram of human BPI.  The N-terminal domain is aqua, and the C-terminal domain is
blue.  A proline-rich linker residues 230-250, which connects the two domains, is shown in
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yellow.  The highly conserved disulfide bonds between Cys 135 and Cys 175 is shown as ball-
and-stick atoms.

Large-scale comparative modeling of protein structures of the yeast
genome

Recently, a large-scale comparative
protein structure modeling of the yeast
genome was performed (Sanchez and Sali,
PNAS, 1998). Fold assignment, comparative
protein structure modeling, and model
evaluation were completely automated. As an
illustration, the method was applied to the
proteins in the Saccharomyces cerevisiae
(baker's yeast) genome. It resulted in all-atom
3D models for substantial segments of 1071
(17%) of the yeast proteins, only 40 of
which have had their 3D structure determined
experimentally. Of the 1071 modeled yeast
proteins, 236 were related clearly to a protein
of known structure for the first time; 41 of
these have not been previously characterized
at all. Many of the models are sufficiently
accurate to facilitate interpretation of the
existing functional data as well as to aid in the
construction of mutants and chimeric

proteins for testing new functional
hypotheses. This study shows that
comparative modeling efficiently increases
the value of sequence information from the
genome projects, although it is not yet
possible to model all proteins with useful
accuracy.

The main bottlenecks are the absence of
structurally defined members in many protein
families and the difficulties in detection of
weak similarities, both for fold recognition
and sequence-structure alignment. However,
while only 400 out of the total of a few
thousand domain folds are known, the
structure of most globular folds is likely to be
determined in less than ten years. Thus,
comparative modeling will conceivably be
applicable to most of the globular protein
domains close to the completion of the
human genome project.
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Large-scale protein structure modeling. A small sample of the 1,100 comparative models
calculated for the proteins in the yeast genome is displayed over an image of a yeast cell.

Methods for Fold Assignment
Recent work on fold assignment (or

"threading") involves two main approaches:
developing potentials for fold assignment,
and Hidden Markov Models (HHMs) or
profile methods that descended from
sequence alignment methods. The potentials
can be contact potentials (potentials of mean
force) or they can be more complex semi-
empirical potentials, involving atomic areas
and other properties. Fold assignment
approaches further subdivide into two
categories: (1) unipositional methods that
consider probability distributions of amino
acids at single sites and (2) those that
consider distributions on pairs (or even
triples) of amino acids within a contact
distance in a given structure. Hidden Markov
models to date have considered single site

probability distributions. We discuss each
approach in turn.

 Contact potentials for threading.
Unipositional fold assignment approaches
score each residue position in a template
structure using local 3D environmental
information such as secondary structure
propensity, degree of environmental polarity,
and the fraction of the residue surface buried
and inaccessible to solvent. The 3D
environmental information for each residue
then becomes a one-dimensional profile of the
tertiary structure or fold, and the
compatibility of the twenty common amino
acids are evaluated for each position in the 1-
D profile. Optimal 1-D alignments of a probe
sequence to a given structure can be
determined by dynamic programming, and the
subsequent score of the aligned sequence
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against the template are determined by the
global characteristics of the sequence-
environment fit, thereby tolerating locally
poor scores.

Unipositional methods demonstrated
impressive ability for determining similar
topological folds for proteins with less than
25% sequence identity in some cases.
However, only 25% of genome sequences
recognize their 3D protein fold with a
sufficient threshold of confidence to be
considered a successful fold assignment. One
reason for this modest success rate of
threading is that the repertoire of folds is
thought to be incomplete. This repertoire (or
library) is growing modestly through the
current efforts of structural biologists, and a
strong Structural Genomics Initiative will
give a major boost to fold assignment in the
future. It has been estimated that the success
rate of fold assignment algorithms will
increase to roughly 50% once these missing
folds are identified structurally. For the
remaining 50% of genome sequences to be
assigned to folds, there must be advances in
the directions discussed here.

 The first advance is to move to multi-
positional compatibility functions. Pairwise
threading potentials typically consider the
propensity of two amino acids to be within
a specified distance using a score function
compiled from a database of structures.
Additional features can be used in addition
to the identify of the amino acids, such as
the secondary structure type, relative
exposure to water, relative position, and
local atomic density. The identification of
the important features is emerging from
interdisciplinary collaborations among
protein scientists, physicists, and computer
scientists, and often involves the use of
computational benchmarks, as discussed
below. Some attempts have been made to go

beyond pairwise potentials, but determination
of higher order probability distributions is
limited by the data available from the present
number of structures. New structures made
available from the Structural Genomics
Initiative would provide some assistance in
this regard, however the number of new
structures is unlikely to dramatically increase
the order of probability distributions that can
be reliably estimated. Therefore further
improvements in pairwise and other
potentials of mean force will rest on better
identification of the relevant physical effects
determining the relation of sequence to
structure, and on improved algorithms to
extract information about these effects from
limited data.

 Alignment of a genome sequence to 3D
structure using pairwise potentials is more
difficult than using unipositional potentials.
Branch and bound algorithms have been
shown to yield the optimal alignment when
they converge, but since the general threading
problem for multipositional potentials is NP
complete, branch and bound algorithms will
not converge in all cases. Nevertheless, they
are often extremely useful. Approximations
can also be employed, such as the frozen
approximation, in which one assumes that the
interaction of test sequence position j with the
amino acid k' of the target structure would be
similar to k in the sequence. Once the
sequence is optimally aligned using the frozen
approximation, the multipositional
compatibility function is used to score the
sequence-structure match. However, this
current state-of-the-art alignment has proved
insufficient in the blind prediction experiment
CASP2, and improved methods are essential
to reach accurate protein models.

Hidden Markov Models. HMM's
consider single site probability distributions
for amino acids, but have the added feature of
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a Markovian transition matrix between
"hidden" states. The hidden states
effectively perform a choice among a set of
position dependent amino acid probability
distributions. In contrast to threading
methods, HMM's do not use an explicit
scoring function to score the match of an
amino acid with its environment, nor do they
typically consider pairwise interactions.
HMMs rely heavily on position specific
scoring functions that, in combination with
the hidden Markov states, match
appropriate probability distributions to
sequence positions. Prior knowledge about
amino acid probability distributions can be
incorporated in a Bayesian framework for
HMM's using "Dirichlet prior" probability
distributions.

HMM's can be used for fold
identification by performing a standard
sequence based homology search using the
probe sequence to generate homologous
sequences. These sequences can be used to
construct an HMM based on the probe, and
then the sequences from a library of folds
can be matched against the HMM. Similarly,
one can construct separate HMM models
for each member of a library of folds, and
then score the probe sequence against each
model. Construction of HMM models is
typically an iterative process involving
successive periods of modeling building,
searching with the given model, and model
refinement. Alignment to a HMM can be
performed in an efficient recursive manner,
similar to dynamic programming.

A variety of methods has been applied
to the problem of scoring the match of a
sequence to a structure. These include both
analytical methods such as Markov Random

Fields, and neural networks, and highly
empirical energy-like functions. These range
from unipositional functions with three or
greater environmental descriptors, to
multipositional functions that consider the
attributes of two or more amino acids at a
time. Multipositional functions are
potentially more sophisticated since a score is
based on the compatibility of multiple amino
acids in the test sequence with multiple
positions in the target structure.

Even after perfect fold assignment can be
achieved, there remains a computational
bottleneck in providing a predicted 3D
structure: proper alignment of the sequence to
the structure. Alignment with unipositional
compatibility functions, which add the
independent contributions of a single position
of a test sequence to a single position in the
target fold, offers the advantage of using well-
established dynamic-programming algorithms
to find the optimal alignment, although poor
gap and insertion penalty parameters can
render this optimum somewhat arbitrary.
HMM's offer effective position dependent
insertion/deletion penal- ties as well as an
efficient alignment procedure, but ignore more
than single site probabilities, as do other
unipositional compatibility functions.
Pairwise threading potentials add an additional
order of statistics (the pairwise probability
distributions between amino acids), but with
an increase in computational cost for the
alignment step. Allowing only a limited
number of gaps between secondary structure
elements, and exhaustively enumerating all
possible resulting threadings, has been
implemented for multipositional compat-
ibility functions and has been successful for a
subset of interesting cases.

Methods for Comparative Modeling
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Comparative modeling remains the only
method at present that can provide models
with an rms error lower than 2Å. All current
comparative modeling methods consist of
four sequential steps. The first step is to
identify the proteins with known 3D
structures that are related to the target
sequence. The second step is to align them
with the target sequence and to pick those
known structures that will be used as
templates. The third step is to build the
model for the target sequence given its
alignment with the template structures. In the
fourth step, the model is evaluated using a
variety of criteria. If necessary, the alignment
and model building are repeated until a
satisfactory model is obtained. The main
difference between the different comparative
modeling methods is in how the 3D model is
calculated from a given alignment (step 3
above).

The original and still widely used method
is modeling by rigid body assembly. The
method constructs the model from a few core
regions, and loops and side-chains, which are
obtained from dissected related structures.
This assembly involves fitting the rigid
bodies on the framework, which is defined as
the average of the Cα atoms in the conserved
regions of the fold. Another family of
methods, modeling by segment matching,
relies on approximate positions of conserved
atoms from the templates to calculate the
coordinates of other atoms. This is achieved
by the use of a database of short segments of
protein structure, energy or geometry rules,
or some combination of these criteria. The
third group of methods, modeling by
satisfaction of spatial restraints, uses either
distance geometry or optimization techniques
to satisfy spatial restraints obtained from the
alignment of the target sequence with
homologous templates of known structure. In

addition to the methods for modeling the
whole fold, numerous other techniques for
predicting loops and side-chains on a given
backbone have also been described. These
methods can often be used in combination
with each other and with comparative
modeling techniques.

Perhaps the most promising comparative
model building technique (step 3 above) is the
comparative modeling by satisfaction of
spatial restraints. The reason is that this
approach is based only on optimization of an
objective function, and it thus allows an
efficient exploration of various
representations of protein structure, methods
of optimization, and objective function
forms. The computational complexity of this
approach is directly tied to methods such as
global optimization described in the next
chapter. This flexibility is essential for
improving comparative protein modeling. It
will also facilitate simultaneous use of
different sources of information when
calculating a model of a given protein. For
example, a model may be constructed that is
consistent with the template structures,
potentials of mean force, NMR restraints,
cross linking experiments, site-directed
mutagenesis data, etc. Boundaries between
comparative modeling, fold assignment, ab
initio folding simulations, ligand docking,
NMR and X-ray structure refinement will be
blurred.

The best comparative techniques can
generally produce models with good
stereochemistry and overall structural
accuracy that is slightly higher than the
similarity between the template and the
actual target structures, when the modeling
alignment is correct. The errors in
comparative models can be divided into five
categories: (1) Side-chain packing errors. (2)
Distortions and rigid body changes in regions
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that are aligned correctly (e.g., loops, helices).
(3) Distortions and rigid body changes in
insertions (e.g., loops). (4) Distortions in
incorrectly aligned regions (loops and longer
segments with low sequence identity to the
templates). (5) Incorrect fold resulting from
an incorrect choice of a template. The
consequence of these errors is that the
comparative method can result in models
with a main-chain rms error as low as 1Å for
90% of the main-chain residues, if a sequence
is at least 40% identical to one or more of the
templates. In this range of sequence
similarity, the alignment is mostly
straightforward to construct, there are not
many gaps, and structural differences
between the proteins are usually limited to
loops and side-chains. When sequence
identity is between 30% and 40%, the
structural differences become larger, and the
gaps in the alignment are more frequent and
longer. As a result, the main-chain r.m.s. error
rises to ~ 1.5 Å for about 80% of residues.
The rest of the residues are modeled with
large errors because the methods generally
cannot model structural distortions and rigid
body shifts, and cannot recover from
misalignments. Insertions longer than about 8
residues usually cannot be modeled
accurately at this time, while shorter loops
frequently can be modeled successfully.
Model evaluation methods are frequently
successful in identifying the inaccurately
modeled regions of a protein. To put the
errors into perspective, we list the differences
among experimentally determined structures
of the same protein: the 1.0Å accuracy of
main-chain atom positions corresponds to X-
ray structures defined at a low-resolution of
about 2.5 Å and with an R-factor of about
25%, as well as to medium-resolution NMR
structures determined from 10 inter-proton
distance restraints per residue.

Future improvements of comparative
modeling should aim to (1) model proteins
with lower similarities to known structures
(e.g. , less than 30% sequence identity), (2) to
increase the accuracy of the models, and (3)
to make modeling fully automated. The
improvements are likely to include
simultaneous optimization of side-chain and
backbone conformations in side-chain
modeling, simultaneous optimization of a
loop and its environment in loop modeling,
and simultaneous optimization of the
alignment and the model. At the same time,
better potential functions and possibly better
optimizers are needed. The potential function
should guide the model away from the
templates in the direction towards the correct
structure. An addition of atomic or residue
based potentials of mean force to the
homology-derived scoring could be one way
of achieving this goal. This is a difficult
problem, as illustrated by the fact that no
present force field or potential of mean force
can produce a model with a main-chain rmsd
from the X-ray structure smaller than about
1Å, even when the starting conformation is
the X-ray structure itself. For example,
molecular dynamics simulations in solvent
generally have a main-chain rmsd of more
than 1Å, and the most detailed lattice folding
simulations result in models with an rms error
larger than 2Å. Since most of the main-chain
atoms in two homologs with at least 40%
sequence identity usually superpose with an
r.m.s.d. of about 1Å, it is currently better to
aim to reproduce the template structures as
closely as possible rather than to venture
away from the templates in the search for a
better model.

The major factor that limits the use of
comparative modeling in the cases of less
than 30% sequence identity is the alignment
problem, as discussed in the fold recognition
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problem (Figure 1A). In principle, the
alignment can be derived by any of the
sequence or sequence/ structure alignment
methods, but in practice even careful manual
editing frequently results in significant
alignment errors. At 30% sequence identity,
the fraction of incorrectly aligned residues is
about 20% and this number rises sharply
with further decrease in sequence similarity.
This limits the usefulness of comparative
modeling because no current modeling
technique can recover from an incorrect input
alignment. It would appear that fold
recoginition methods are a natural solution to
the alignment problem in comparative
modeling. However, while these techniques
are successful in identifying related folds,

they appear to be somewhat less successful
in generating correct alignments, although
improvements in alignment for fold
recognition is a goal of future work. To
reduce the errors in the model stemming from
the alignment errors, iterative changes in the
alignment during the calculation of the model
are needed. Provided the objective function is
capable of distinguishing a good model from a
bad one, the iterative realignment and re-
selection of templates will minimize the
effect of errors in the initial alignment and
selection of templates. A case in point is
provided by the generation of the RUVB
model based on a remotely related E. coli δ
structure.

The Need for Advanced Computing for
Fold Assignment and Comparative Modeling

Several fundamental issues remain to
amplify the effectiveness of fold assignment
and comparative modeling. Both can be
addressed with broader computational
resources and better communication among
protein scientists and computational

scientists. A primary issue in fold assignment
is the determination of better multipositional
compatibility functions which will extend fold
assignment into the "twilight zone" of
sequence homology. In both fold assignment
and comparative modeling, better alignment
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algorithms that deal with multipositional
compatibility functions are needed. A move
toward detailed empirical energy functions
and increasingly sophisticated optimization
approaches in comparative modeling will
occur in the future. As these future
directions develop, computational bench-
marks will be important. These are sets of
distantly related pairs of proteins, having
similar folds, but very different amino acid

sequences. New methods for fold recognition
and comparative modeling are developed
without the use of these pairs, and then tested
on this set, with the goal of assigning each
sequence to its proper fold, and further
refining that fold for accurate structure. The
value of computational benchmarks is that
they permit unbiased development of new
functions.   

The availability of tera-scale computational
power will further extend fold assignment in
the following ways: the alignment by
dynamic programming is performed in order
L2 time, where L is the length of the
sequence/structure. For 100,000's of
sequences and 10,000's of structures (each of
order 102 amino acids long), an all to all
comparison of sequence to structure using
dynamic programming would require on order
of 1013 operations. Genuine teraflop
computing capability could make
comparisons on this scale, and indeed one or
two orders of magnitude bigger, routine
today. The use of multipositional functions
that will scale as L3 or L4 depending on the
complexity of the compatibility function, and
may require 1015 to 1017 FLOPS, and will
likely need an effective search strategy in

addition. The next generation of 100 teraflop
computers addresses both fundamental issues
in reliable fold assignment. First, an increase
in complexity in alignment algorithms for
multipositional functions that scale beyond
L2, and secondly the development of new
multipositional compatibility functions
whose parameters are derived by training on
large databases with multiple iterations,
resulting in an increase in sensitivity and
specificity of these new models.

Availability of tera-flop computing will
greatly benefit comparative protein structure
modeling of both single proteins and the
whole human genome. Once an alignment is
determined, comparative modeling is formally
a problem in molecular structure
optimization. The objective function is
similar in complexity to typical empirical

protein force fields used in ab initio global
optimization prediction and protein folding
(Chapter 3), and scales as M2, where M is
the number of atoms in the model. A typical
calculation for a medium sized protein takes

in the order of 1012 Flops. More specifically,
the increased computing power is likely to
improve the accuracy of comparative models
by aleviating the alignment problem and the
loop modeling problem, at the very least.

In fold assignment, an all to all comparison of sequence to structure using
dynamic programming scales as L2, and requires on order of 1013 FLOPs. The
use of more sensitive multipositional functions that will scale as L3 or L4 will
likely require 1015 to 1017 FLOPS. With increased complexity of modeling
function and optimization approach, comparative modeling techniques used
over the entire human genome will scale beyond 1017 Flops.
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It is probable that the impact of the
alignment errors will be decreased by
performing independent comparative
modeling calculations for many different
alignments. Perhaps as many as 1000
different alignments will be explored in this
way. This would in essence correspond to a
conformational search with soft constraints
imposed by the alignment procedure. Such a
procedure would increase the computational
cost to 1015 Flops for a single protein, and to
1020 Flops for the human genome.

Specialized and time consuming loop
modeling procedures can be used after the

initial comparative models are obtained by
standard techniques. Such specialized
procedures typically need about 5000 energy
function evaluations to obtain one loop
conformation. It is standard to calculate an
"ensemble" of 25-400 loop conformations for
each loop sequence. Thus, the total number
of function evaluations is on the order of 106

for prediction of one loop sequence.
Applying these procedures to the whole
human genome would take on the order of
1018 Flops.


